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Abstract  —  A model is proposed for characterizing the effects 

of spectrum on cadmium telluride and crystalline silicon 
photovoltaic (PV) modules. It is of simple functional form, 
allowing it to be easily implemented into standard PV simulation 
tools. The model corrects for changes in spectrum due to air mass 
and precipitable water content. The model has module-specific 
coefficients based on the module’s quantum efficiency curve. For 
modules with similar quantum efficiency curves, the same 
coefficients can be used. Field performance data of operational PV 
arrays is used to validate the model. Results illustrate an 
improvement when compared to existing simple spectral 
correction methods and suggest that the proposed spectral 
correction should be included in PV prediction software. 

I. INTRODUCTION 

Changes in the spectral composition of incoming irradiance 

due to different atmospheric constituents can have a significant 

impact on the performance and energy yield of photovoltaic 

(PV) power plants. Because of varying spectral responsivities, 

various PV technologies may respond differently under the 

same spectral conditions. Likewise, the prevailing spectral 

conditions encountered by a PV array can vary significantly 

from site to site. Despite the significant impact they can have 

on PV performance [1]-[6], spectral effects are not accounted 

for in most software applications commonly used for simulating 

non-concentrating PV arrays.  

Several spectral corrections methodologies have been 

proposed; however, hurdles have prevented their widespread 

adoption. King et al. developed the “Sandia Method”, an 

empirically-based spectral correction, determined through 

outdoor testing, which represents spectral characteristics of PV 

modules using a fourth order polynomial as function of absolute 

air mass (AMa) [7]-[8]. However, later research determined that 

the correction introduces uncertainty into PV performance 

predictions. It was speculated that uncertainty in the AMa based 

spectral correction was due to atmospheric water vapor [9]. 

Nelson et al. [1] proposed a parameterization of cadmium 

telluride (CdTe) PV spectral sensitivity as a function of 

precipitable water (Pwat). The parameterization was derived 

using the Simple Model of the Atmospheric Radiative Transfer 

for Sunshine (SMARTS) model with TMY3 data as inputs. 

SMARTS is an atmospheric model that predicts the spectrum 

under clear sky conditions [10]. TMY3 files were created by the 

National Renewable Energy Laboratory (NREL) and provided 

an hourly annual data set that is representative of typical 

meteorological conditions and long term irradiance at a 

particular location [11]. Subsequently, Lee et al. [2] updated the 

coefficients of the parameterization to model the performance 

of later generation CdTe modules with improved quantum 

efficiency (QE) curves. Both papers [1]-[2] presented outdoor 

PV performance data which corroborates the computationally-

derived parameterizations. However, a fundamental limitation 

of the model is that it cannot be extended to crystalline silicon 

(c-Si) module types because Pwat is not the primary driver of the 

spectral sensitivity of c-Si PV. In addition, there is a secondary 

dependence of CdTe spectral sensitivity on AMa which is absent 

from the model [3]. 

We propose a new spectral correction based on AMa and Pwat 

that is applicable to both CdTe c-Si PV modules. The 

effectiveness of the proposed spectral model is evaluated using 

publically available outdoor test data provided by NREL [12]. 

Results suggest an improvement when compared to existing 

simple spectral correction methods. 

 

 
 
Fig. 1. Sensitivity analysis of M as a function of Pwat and 

AMa for a) CdTe and b) multi-Si. 

 



 

 

II. SPECTRAL MODEL 

A. Simulating Spectral Effects Using SMARTS Model 

The metric used in this paper to quantify the effects of 

spectrum on PV performance is called spectral shift (M). 

Spectral shift is often referred to as spectral mismatch in the PV 

industry. A value of M greater than one indicates module power 

under the prevailing spectrum will be greater than that under 

broadband irradiance of the same magnitude but distributed 

according to the ASTM G173 standard. The SMARTS model 

was used to conduct a multivariate sensitivity analysis on M for 

one multi-crystalline silicon (multi-Si) module and one CdTe 

module. The modules correspond to Manufacturer 2 Module C 

and Manufacturer 3 Module D used in the NREL outdoor 

testing [12].  

In accordance with the G173 standard, spectra were 

simulated on an equatorial facing surface with 37° tilt. All 

combinations of AM and Pwat over the range of 0.1 cm ≤ Pwat ≤ 

5 cm and 1 ≤ AM ≤ 5 were simulated. The range of wavelengths 

used in calculations was 280 nm to 2800 nm, which are limits 

of a typical secondary standard pyranometer. All other 

parameters input into SMARTS were kept at the G173 standard. 

Spectral shift was computed for both modules at each AMa and 

Pwat combination using the generated spectra and module QE 

curves as inputs. The result of the two variable sensitivity 

analysis for each module is illustrated in Fig. 1. 

B. Parameterization of SMARTS Output  

M falls along a continuous 3D surface as a function of AMa 

and Pwat. The smoothness of the surfaces suggested that they 

could be easily parameterized. Multiple linear regression was 

applied using a variety of test functions. Represented in (1) is a 

functional form that provided a high level of accuracy while 

remaining relatively simple. The module-specific coefficients 

are presented in Table I. 

𝑀 = 𝑏0 + 𝑏1 ∙ 𝐴𝑀𝑎 + 𝑏2 ∙ 𝑝𝑤𝑎𝑡 + 𝑏3 ∙ √𝐴𝑀𝑎 + 

𝑏4 ∙ √𝑝𝑤𝑎𝑡 + 𝑏5 ∙
𝐴𝑀𝑎

√𝑝𝑤𝑎𝑡
 

(1) 

For the CdTe module, the coefficient of determination (R2) 

between the SMARTS simulation and the regression output was 

0.9986 and the mean absolute error (MAE) was 7.7×10-4. The 

maximum difference between the SMARTS output and the 

regression was 0.0090. For the multi-Si module, the R2 between 

CdTe 

  

Multi-Si 

  

Fig. 2. a) CdTe spectral correlation proposed by [1] versus measured M for the CdTe module. b) M estimated using (1) versus measured M 

for the CdTe module. c) “Sandia” spectral correction [7]-[8], versus measured M the multi-Si module. d) M estimated using (1) versus 

measured M for the multi-Si module. All M data is of daily resolution and GHI weighted. 

 



 

 

the SMARTS simulation and the regression fit was 0.9993 and 

the MAE was 2.97×10-4. The maximum difference between the 

SMARTS output and the regression was 0.0047.  
 

TABLE I: PARAMETERIZATION COEFFICIENTS 

Module b0 b1 b2 b3 b4 b5 

CdTe 0.7946 -0.05423 -0.01319 0.1724 0.08372 -0.004376 

Multi-Si 0.8409 -0.02754 -0.00792 0.1357 0.03802 -0.002122 

C. Comparison of Parameterization to Existing Models  

The proposed parameterization for the CdTe module was 

compared to the Pwat only model proposed by Nelson et al [1]. 

In order to do so, (1) was evaluated with the CdTe coefficients 

for Pwat between 0.1 cm and 5 cm (interval of 0.1 cm) and AMa 

fixed to the ASTM standard of 1.5. The Pwat-only model was 

evaluated over the same range of Pwat. The two models 

produced roughly equivalent results. The MAE between the 

two models was 0.0039 and the maximum difference between 

the two models was 0.0053.  

The Pwat and AMa parameterization for the multi-Si module 

was held at a Pwat equal to the G173 standard, 1.42 cm, and was 

compared to the Sandia AMa-only correction. The Sandia 

coefficients for the module were provided by Marion et al. [12]. 

The models produced similar results, with the mean absolute 

error between the two models was 0.0039 with the maximum 

difference between the two models being 0.0062 

III. FIELD VALIDATION 

Publically available NREL data for test sites in Golden, 

Colorado; Cocoa, Florida; and Eugene, Oregon, have been 

analyzed in an attempt to validate the correlation developed 

using SMARTS [12]. Golden, Köppen Dfb, is warm summer 

continental or hemiboral climate; Cocoa, Köppen Cfa, is a 

humid subtropical climate; and Eugene, Köppen Csb, is a cool-

summer Mediterranean climate. The data sets contain time 

series I-V characteristics of the PV modules and corresponding 

meteorological data at each location. The modules are all fixed 

tilt, oriented south, with their tilt approximately equal to the 

latitude of their location. At Eugene and Cocoa, the data was 

recorded at five minute intervals, whereas at Golden, data was 

recorded at fifteen minute intervals.  

Among other PV technologies, there was one CdTe and three 

multi-Si modules at each site. This study is limited to the CdTe 

module, Manufacturer 3 Model D, and multi-Si module, 

Manufacturer 2 Model C. The particular multi-Si module was 

chosen for analysis because it was cleaned at regular intervals.  

The ratio of module short circuit current (Isc) to plane of array 

irradiance (POA) as measured using a Kipp & Zonen CMP 22 

is used to estimate the effects of spectrum. The ratio has been 

normalized by dividing by Isc at 1000 W/m2 as tested according 

to the Sandia Array Performance Model under outdoor 

conditions [7]. The module Isc was corrected for the effects of 

temperature using a linear temperature coefficient. The module 

Isc was also corrected for angle of incidence (AOI) effects using 

the Sandia Model [7]-[8]. For incidence angles less than 29°, 

AOI losses were set to zero to reduce uncertainty which results 

from the Sandia Model’s use of a polynomial fit. The Isc 

temperature coefficients and AOI response coefficients were 

measured after field deployment and were made available by 

[12]. For the CdTe modules, Isc was corrected for soiling losses 

using the estimates provided by the data set. A soiling 

correction was not necessary for the multi-Si modules because 

they were cleaned regularly. In an effort to reduce noise, 

analysis was limited to when irradiance was greater than 200 

W/m2, AOI effects were less than one percent, and clearness 

index (Kt) was between 0.7 and 1.0.  

The meteorological data at the site was used to estimate 

spectral shift for both the multi-Si and CdTe modules. For the 

CdTe modules, spectral shift was estimated using (1) with the 

appropriate coefficients from Table I, and also by using the 

Pwat-only parameterization proposed by [1]. For the multi-Si 

modules, spectral effects were estimated using (1) and by using 

the AMa-only correction proposed by [7]-[8]. Pwat was 

estimated using relative humidity (RH) and ambient 

temperature (Tamb) measurements according to the correlation 

 

TABLE II: LINEAR REGRESSION OF OUTDOOR TESTING DATA 

Site, Module One Parameter Spectral Correlation Two Parameter Spectral Correlation 

Cocoa, FL: CdTe 
𝑀𝑃𝑤𝑎𝑡 = 0.5420 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 0.476 

𝑀𝐴𝐸 = 0.0169; 𝑅2 = 0.  494 

𝑀2−𝑃𝑎𝑟𝑎𝑚 = 0.5805 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 0.436 

𝑀𝐴𝐸 = 0.0157; 𝑅2 = 0.705 

Cocoa, FL: multi-Si 
𝑀𝐴𝑀𝑎

= 0.9435 ∙ 𝑀𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 0.0439 

𝑀𝐴𝐸 = 0.0130; 𝑅2 = 0.428 

𝑀2−𝑃𝑎𝑟𝑎𝑚 = 0.9326 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒 + 0.0603 

𝑀𝐴𝐸 = 0.00749; 𝑅2 = 0.  724 

Eugene, OR: CdTe 
𝑀𝑝𝑤𝑎𝑡 = 0.536 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 0.476 

𝑀𝐴𝐸 = 0.0188; 𝑅2 = 0.  445 

𝑀2−𝑃𝑎𝑟𝑎𝑚 = 0.638 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 0.373 

𝑀𝐴𝐸 = 0.0162; 𝑅2 = 0.598 

Eugene, OR: multi-Si 
𝑀𝐴𝑀𝑎

= 1.00292 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 0.0038 

𝑀𝐴𝐸 = 0.00406; 𝑅2 = 0.696 

𝑀2−𝑃𝑎𝑟𝑎𝑚 = 0.767 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 0.2303 

𝑀𝐴𝐸 = 0.00306; 𝑅2 = 0.817 

Golden, CO: CdTe 
𝑀𝑃𝑤𝑎𝑡 = 0.7051 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 0.  28836 

𝑀𝐴𝐸 = 0.00827; 𝑅2 = 0.712 

𝑀2−𝑃𝑎𝑟𝑎𝑚 = 0.7266 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 0.  258 

𝑀𝐴𝐸 = 0.0150; 𝑅2 = 0.706 

Golden, CO: multi-Si 
𝑀𝐴𝑀𝑎

= 0.0360 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 0.956 

𝑀𝐴𝐸 = 0.00955; 𝑅2 = 0.001 

𝑀2−𝑃𝑎𝑟𝑎𝑚 = 0.561 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 0.424 

𝑀𝐴𝐸 = 0.01256; 𝑅2 = 0.356 

 



 

 

proposed by [14]-[15]. Air mass was estimated from zenith 

angle using the method proposed by [16].  

The sub-hourly time series data of measured and predicted 

spectral shift was aggregated to daily resolution using global 

horizontal irradiance (GHI) weighted averages. For both the 

CdTe and the multi-Si modules at each site, predicted daily 

spectral shift, as calculated using the existing and newly 

proposed spectral correction methodologies, was plotted 

against measured spectral shift. The results at Cocoa are 

included as Fig. 2. The results of the linear regression for all 

three locations are included in Table II.  

Both Fig. 2 and Table II illustrate that the two parameter 

spectral correction as good as, or better than, the existing one 

parameter models in capturing the effects of spectral shift on 

  

  

  

Fig. 3. Time series of measured and modeled M for: a) CdTe module at Cocoa, FL; b) multi-Si module at Cocoa, FL; c) CdTe module at 

Eugene, OR; d) multi-Si module at Eugene, OR; e) CdTe module at Golden, CO; and f) multi-Si module at Golden,  CO. For the CdTe 

modules, M was estimated using the (1) and the Pwat-only spectral corrections. For the c-Si modules, M was estimated using the (1) and 

the AMa-only spectral corrections.  

 

 



 

 

module performance. The two parameter spectral correction 

resulted in the most improvement in Cocoa, Florida. For the 

CdTe module, the R2 of the linear fit between M predicted and 

M measured improved from 0.494 to 0.705.  For the multi-Si 

module, the R2 improved from 0.428 to 0.724, and the MAE 

was significantly reduced from 0.13 to 0.0075. At Eugene, the 

two parameter correlation resulted in a significant improvement 

in the R2 between the modeled and measured spectral effects. 

At Golden, for CdTe the R2 between the modeled and measured 

spectral effects was roughly equivalent for the two parameter 

model and the Pwat-only spectral correction. For both models 

the statistical relationship is strong, with R2 being greater than 

0.70 in both cases. For the multi-Si module in Golden, there 

was no statistical relationship between the measured M and M 

estimated using AMa-only spectral correction. However, using 

the Pwat and AMa spectral correction increased the R2 from 

0.001 to 0.356, signifying a statically significant, but weak 

relationship. 

Illustrated in Fig. 3 are time series plots of measured M along 

with the two parameter spectral correction determined from (1) 

and the appropriate one parameter spectral correction. In Fig. 3, 

the left column of subplots are for the CdTe modules, and the 

right are for the multi-Si modules. Each row is for a different 

test location: subplots (a-b) are for Cocoa subplots (c-d) are for 

Eugene, and subplots (e-f) are for Golden.  Fig. 3(a, c, e) 

illustrates that for the CdTe module at each site there is good 

agreement among measured spectral shift, spectral shift 

modeled using Pwat only, and spectral shift modeled using Pwat 

and AMa.  

Fig. 3(b, d) shows that for multi-Si module in Cocoa and 

Eugene there is also good agreement between the measured 

spectral shift and spectral shift modeled using Pwat and AMa. 

However, in both Cocoa and Eugene spectral shift modeled 

using AMa only had the correct seasonal trend, but 

overestimated seasonal variation and failed to capture shorter 

term variation in spectral shift.  

As illustrated by Fig. 3f, for the multi-Si module at Golden 

there was no relationship between measured spectral shift and 

spectral shift as estimated using the AMa-only correlation. Yet, 

it appears that the two parameter spectral correction is capturing 

some of the shorter term variation in performance. However, it 

is not accurately capturing seasonal variation, suggesting that 

the effects of AMa are being over weighted. Thus, Fig. 3f 

provides context for the statically significant, but weak 

relationship seen in Table II.  

Fig. 3(a, c) shows that there is an offset between measured 

and predicted performance of the CdTe modules in Cocoa and 

Eugene. While the two parameter and Pwat-only spectral 

corrections are in strong agreement, there is an offset of one to 

two percent between the modeled and the measured spectral 

shift. This explains the high overall MAE seen in Table II for 

the CdTe modules in Cocoa and Eugene. As shown in Fig. 3(b), 

for the multi-Si PV module in Eugene, there was a similar, but 

smaller, offset between the two parameter model and measured 

spectral shift. 

Nonetheless, it is difficult to differentiate between model bias 

and measurement inaccuracy. As previously stated, the 

nameplate Isc of the PV modules was used to normalize the 

measured spectral shift. However, the nameplate Isc values were 

tested through outdoor field testing that does not account for the 

difference between the prevailing Pwat and the G173 standard. 

As a result, the Isc of the PV modules could have been over or 

under estimated, causing the offset between measured and 

modeled spectral shift.  

CONCLUSION 

This paper presented a newly developed model for 

characterizing the effects of spectrum on PV modules. The 

model corrects for changes in spectrum due to air mass and 

precipitable water content. The model has module-specific 

coefficients based on the module’s quantum efficiency curve. 

For modules with similar quantum efficiency curves, the same 

coefficients can be used. Module specific coefficients are 

calculated through the use of a sensitivity analysis in SMARTS. 

This paper focuses on CdTe and multi-Si PV modules; 

however, given the similarity in the quantum efficiency curves 

between mono-Si and multi-Si PV modules, the proposed 

spectral model can also be applied to mono-Si. This is done 

through the generation of module-specific coefficients 

following the procedure outlined in Section II. 

Analysis of publically available data from outdoor PV tests 

arrays demonstrated that the computationally derived model 

captured variation in PV module performance due to spectrum. 

Results illustrate an improvement when compared to existing 

simple spectral correction methods based on Pwat–only or AMa-

only, and suggest that the proposed spectral correction should 

be included in PV prediction software. We recommend that PV 

prediction software include this spectral correction. A 

preliminary version of the proposed spectral correction, with 

default coefficients for CdTe, multi-Si, and mono-Si PV 

modules, is available in PVLIB 1.31. PVLIB is publically 

available set of documented functions for simulating the 

performance of photovoltaic energy systems in both the 

MATLAB and Python programing languages [17]. The 

finalized spectral correction will be available in a future version 

of PVLIB. 
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